Isolated Execution on Many-core Architectures

نویسندگان

  • Ramya Jayaram Masti
  • Devendra Rai
  • Claudio Marforio
  • Srdjan Capkun
چکیده

We explore how many-core platforms can be used to enhance the security of future systems and to support important security properties such as runtime isolation using a small Trusted Computing Base (TCB). We focus on the Intel Single-chip Cloud Computer (SCC) to show that such properties can be implemented in current systems. We design a system called SEMA which offers strong security properties while maintaining high performance and flexibility enabled by a small centralized security kernel. We further implement and evaluate the feasibility of our design. Currently, our prototype security kernel is able to execute applications in isolation and accommodate dynamic resource requests from them. We show that, with minor modifications, many-core architectures can offer some unique security properties, not supported by existing singleand multi-core architectures, such as application context awareness. Context awareness, a new security property that we define and explore in this work, allows each application to discover, without any interaction with the security kernel, which other parts of the system are allowed to interact with it and access its resources. We also discuss how an application can use context awareness to defend itself from an unlikely, yet potentially compromised security kernel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications

Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...

متن کامل

Shell: A Spatial Decomposition Data Structure for 3D Curve Traversal on Many-Core Architectures

Shared memory many-core processors such as GPUs have been extensively used in accelerating computation-intensive algorithms and applications. When porting existing algorithms from sequential or other parallel architecture models to shared memory many-core architectures, non-trivial modifications are often needed in order to match the execution patterns of the target algorithms with the characte...

متن کامل

Solution of eigenvalue problems on heterogeneous computing architectures

In this paper are presented current achievements and the state-of-the-art algorithms and implementations for dense linear algebra on traditional architectures such as single-core machines or distributed memory parallel machines. Also, this paper summarizes the current implementations and publicly available libraries for basic linear algebra for multi-core and many-core architectures (e.g. graph...

متن کامل

High-Level Support for Pipeline Parallelism on Many-Core Architectures

With the increasing architectural diversity of many-core architectures the challenges of parallel programming and code portability will sharply rise. The EU project PEPPHER addresses these issues with a component-based approach to application development on top of a taskparallel execution model. Central to this approach are multi-architectural components which encapsulate different implementati...

متن کامل

A Methodology for Profiling and Partitioning Stream Programs on Many-core Architectures

Maximizing the data throughput is a very common implementation objective for several streaming applications. Such task is particularly challenging for implementations based on many-core and multi-core target platforms because, in general, it implies tackling several NPcomplete combinatorial problems. Moreover, an efficient design space exploration requires an accurate evaluation on the basis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014